

NUMERICAL SIMULATION OF SIDE SHIP LAUNCHING

Author : Mochammad Ramzi

Supervisor : Prof. Florin Pacuraru University of Galati

INTRODUCTION

- MOTIVATION
- **OBJECTIVE**
- RECENT RESEARCH

MOTIVATION

Predict launching phenomena

Less time consuming of calculation

Simple application to show motion behavior

2/18/2019

Minimize potential risks of capsizing or hitting seabed

01

02

03

To develop an automated numerical simulation of side launching

To predict the whole process of launching

Investigate the effect of different water level on side launching

TOOL:

A programming language and numerical computing developed by <u>MathWorks</u>

2/18/2019

5

RECENT RESEARCH

Author	Focus
Ye. Z. (1994)	Mathematical model of 2D box shape with 3 DOF motion,4 phases, and added mass
Jong P. D. (2004)	simplified numerical model of 2D & 3D numerical problems found causing of draught reducing during simulations.
Kraskowski M. (2007)	Simplified RANSE simulation of a side launching for small vessel compared with experiment result
Fitriadhy A. and Malek A. (2017)	CFD analysis of a ship's side launching with variation of slipway angle and slipway distance
Cardona J. S. (2017)	Controlled design of side launching system for tugboats, introducing simplified two-dimension simulation and new design of tipping table cradle

LAUNCHING CONFIGURATION

GEOMETRY MODEL

GEOMETRY CONFIGURATION

2/18/2019

COMPUTATION PROCEDURE

- COMPUTATION STRATEGY
- MATHEMATIC MODEL
- LAUNCHING PHASES
- LAUNCHING SCENARIO

COMPUTATION STRATEGY

MATHEMATIC MODEL

Force Components :

Gravity force (P), Friction force (F_s), Normal force/Reaction force (F_N), Drag force (F_D)

EQUATION OF MOTION

Sliding Equation of Motion Phases $m x'' = \sum P + Fs + Fn + Fd$

Free damped equation of motion $(m + ma) X(\omega)\omega^2 + B X(\omega)\omega + K_h X(\omega) = 0$

Frequency domain to Time domain $X(t) = X(\omega) e^{(-\zeta \omega t + \varphi)} \cos(\omega_d t + \varphi)$

Computation condition :

- Friction coefficient (μ) = 0.03
- Velocity at initial condition = 0 m/s
- Critical damping coefficient = 5 %
- Density of water = 1 ton/m³
- No environment condition

LAUNCHING PHASES

PHASE 1 the static of an inclined plane.

PHASE 2 The Static Of An **Inclined Plane + Drag Force on cradle**

IMMERSION the translation and rotation of motion + drag force and bouyancy

the static rotation motion with constant forces

PHASE 3 The static of an inclined plane + drag force on cradle & ship

2/18/2019

FREE DAMPED OSCILLATION

LAUNCHING SCENARIO

Case 1 (Optimistic condition) water level : +4.84 m above edge of slipway

Case 2 (Worst condition) water level : +2.6 m above edge of slipway

COMPUTATION RESULTS

- LAUNCHING PLOT
- COMPARISON RESULT
- SUMMARY RESULT
- LAUNCHING RESULT

LAUNCHING PLOT

PHASE 2

2/18/2019

15

LAUNCHING PLOT

TIPPING

LAUNCHING PLOT

IMMERSION

FREE DAMPED OSCILLATION

2/18/2019

COMPARISON RESULT

COMPARISON RESULTS BETW/EEN NUMERICAL AND COMPUTATIONAL FROM REFERENCE

	DURATION		SLIDING PAR		
	Simulation	Real Case	Simulation	Data	Error
PHASE 1	5.53 s	5.53 s	x = 14.22 m v = 5.15 m/s a = 0.932 m/s ²	x = [-] V = 5.3 m/s a = 0.93 m/s²	< 2.7%
PHASE 2	4.05 s	±4-5s	x = 42.44m v = 7.69 m/s a = 0.181 m/s²	x = 44.27 V = - m/s a = - m/s²	< 5%
PHASE 3	3.2 s	±3-4s	x = 63.79 m v = 5.18 m/s a = - 1.11 m/s ²	x = 63.657 m V = - m/s a = - m/s ²	< 1%
total	12.78 s	± 12 - 14 s			

SUMMARY RESULTS

Dhanna	Case 1	Case 2	Duration of	Duration of	
Pnases	(Optimistic Scenario)	(Worst scenario)	Case 1	Case 2	
	x = 14.22 m	x = 33.63 m	F F2 -	8.5 s	
Phase 1	v = 5.15m/s	v = 7.92 m/s	5.53 5		
	a = 0.932 m/s ²	a = 0.932 m/s ²			
	x = 28.22 m	x = 25.84 m			
Phase 2	v = 7.69 m/s	v = 9.38 m/s	4.05 s	2.9 s	
	$a = 0.181 \text{ m/s}^2$	$a = 0.112 \text{ m/s}^2$			
	x =21.35 m	x = 4.68 m			
Phase 3	v = 5.18 m/s	v = 9.21 m/s	3.2 s	0.5 s	
	a = - 1.11m/s ²	a = - 0.74 m/s ²			
		φ = 0.215 rad			
Tipping and		φ́ = 0.473 rad/s			
immersion		a = - 1.453 m/s ²		2.3 s	
		x = 10.38 m			
Eroo		ζ _{heave} = 1.229 m			
Free	$\zeta_{\text{heave}} = 0.23 \text{ m}$	$\varphi_{roll} = 0.21 rad$			
damped	x = 22.73 m	x = 38.8 m	10 s	18.8 s	
oscillation	a = -0.0063 m/s ²	a = -0.066 m/s ²			

LAUNCHING RESULTS

20

Time (s)

Phases	Case 1	Case 1 (x10 ⁶ N)		(x10 ⁶ N)		
	Y	Z	Y	Z		
Phase 1	1.79	-0.217	1.79	-0.217		
Phase 2	0.54	-0.217	0.0054	-0.217		
Phase 3	-1.51	0	-2.29	-0.173		
Tipping and		0	-2 37	0		
immersion		U	-2.57	U		
Free damped	0.09	0	0.080	0		
oscillation	-0.09	U	-0.009	U		

Time (s)

Phases	Case 1	Case 2
Phase 1	0.932 m/s ²	0.932 m/s ²
Phase 2	0.181 m/s ²	0.112 m/s ²
Phase 3	- 1.11m/s ²	- 0.74 m/s ²
Tipping and		1 150 (
immersion		- 1.453 m/s ²
Free damped	0.0000 1-2	0.000 (2
oscillation	-0.0063 m/s ²	-0.066 m/s ²

LAUNCHING RESULTS

Phases	Case 1	Case 2
Phase 1	14.22 m	33.64 m
Phase 2	42.44 m	59.45 m
Phase 3	63.79 m	64.13 m
Tipping and immersion		87.33 m
Free damped oscillation	100.71 m	-0.066 m

Time (s)

Phases	Case 1 (x10 ⁶ N)		Case 2 (x10 ⁶ N)		
	Y	Z	Y	Z	
Phase 1	14.12 m	-1.71 m	33.39 m	-4.04 m	
Phase 2	41.80 m	-5.09 m	59.01 m	-7.28 m	
Phase 3	63.02 m	-7.73 m	63.64 m	-7.94 m	
Tipping and			96 79 m	0.72 m	
immersion			00.70 III	-9.75 111	
Free damped	100 7 m	7.05 m	120.27 m	0 01 m	2
oscillation	100.7 11	-7.95 11	129.27 11	-0.01 111	

LAUNCHING RESULTS

CONCLUSION AND FUTURE WORK

CONCLUSION

The results from phase 1 to 3 of scenario 1 present good agreement to computation from reference by the indication of less than 5% differences

Two scenarios of launching has been successfully automated into six phases by converting frequency domain into time domain

Overall comparison of two scenarios, launching in higher water level provide a safer condition with less oscillation motion

FUTURE WORK

- An upgrade of code is required to automate the program and create free surface effect
- Cradle as a part of launching components needs to be analyzed since it gives influence of ship motion
- Experimental analysis as a comparison to justify the result

A progress of work has been made using *FINE™/Marine*

Set up model :

- Initial mesh about 1.4 8 million cells.
- Use overset grid mesh and adaptive grid refinement
- Assumes reaction force as vertical load on Cog
- Impose sway velocity to slide down

Problem:

Difficulties to maintain continuity equation due to overset grid and adaptive grid refinement

2/18/2019

Thank You